Disappearance and emergence of space and time in quantum gravity
نویسنده
چکیده
We discuss the hints for the disappearance of continuum space and time at microscopic scale. These include arguments for a discrete nature of them or for a fundamental non-locality, in a quantum theory of gravity. We discuss how these ideas are realized in specific quantum gravity approaches. Turning then the problem around, we consider the emergence of continuum space and time from the collective behaviour of discrete, pre-geometric atoms of quantum space, and for understanding spacetime as a kind of ”condensate”, and we present the case for this emergence process being the result of a phase transition, dubbed “geometrogenesis”. We discuss some conceptual issues of this scenario and of the idea of emergent spacetime in general. As a concrete example, we outline the GFT framework for quantum gravity, and illustrate a tentative procedure for the emergence of spacetime in this framework. Last, we re-examine the conceptual issues raised by the emergent spacetime scenario in light of this concrete example.
منابع مشابه
On the Emergence of Time in Quantum Gravity
We discuss from a philosophical perspective the way in which the normal concept of time might be said to ‘emerge’ in a quantum theory of gravity. After an introduction, we briefly discuss the notion of emergence, without regard to time (Section 2). We then introduce the search for a quantum theory of gravity (Section 3); and review some general interpretative issues about space, time and matter...
متن کاملSimultaneous emergence of curved spacetime and quantum mechanics
It is shown in this paper that the geometrically structure-less spacetime manifold is converted instantaneously to a curved one, the Riemannian or may be a Finslerian spacetime with an associated Riemannian spacetime, on the appearance of quantum Weyl spinors dependent only on time in that background flat manifold and having the symplectic property in the abstract space of spinors. The scenario...
متن کاملThe emergence of background geometry from quantum fluctuations
We show how the quantization of two-dimensional gravity leads to an (Euclidean) quantum space-time where the average geometry is that of constant negative curvature and where the Hartle-Hawking boundary condition arises naturally.
متن کامل3D gravity data-space inversion with sparseness and bound constraints
One of the most remarkable basis of the gravity data inversion is the recognition of sharp boundaries between an ore body and its host rocks during the interpretation step. Therefore, in this work, it is attempted to develop an inversion approach to determine a 3D density distribution that produces a given gravity anomaly. The subsurface model consists of a 3D rectangular prisms of known sizes ...
متن کاملSymmetries , Singularities and the De - Emergence of Space
Recent work has revealed intriguing connections between a Belinsky–Khalatnikov– Lifshitz-type analysis of spacelike singularities in general relativity and certain infinitedimensional Lie algebras, particularly the “maximally extended” hyperbolic Kac–Moody algebra E10. In this essay we argue that these results may lead to an entirely new understanding of the (quantum) nature of space(–time) at ...
متن کامل